08G-36. Two boats leave each other, one traveling northeast at 8 knots and the other traveling east at 12 knots. How long does it take them to be 100 mi apart if a knot is 1.15 mph ? \qquad
\qquad hr

$$
100^{2}=(9.2 \mathrm{t})^{2}+(13.8 \mathrm{t})^{2}-2(9.2 \mathrm{t})(13.8 \mathrm{t}) \cos 45^{\circ}
$$

Solver: $\quad \mathrm{t}=\mathbf{1 0 . 2}$

$09 \mathrm{H}-36$. A 36 -in piece of string is used to form a triangle with sides in the ratio 4:5:8. What is the triangle area? ------------------------------36= \qquad $i n^{2}$

$$
4+5+8=17
$$

$$
\text { Side } 1=(4 / 17)(36)=8.470 \ldots \quad \text { Side } 2=(5 / 17)(36)=10.588 \ldots
$$

$$
\text { Side } 3=(8 / 17)(36)=16.941 \ldots \quad \text { Semi-perimeter }=36 / 2=18
$$

$$
\text { Area }=\sqrt{(18)(18-16.941 \ldots)(18-10.588 \ldots)(18-8.470 \ldots)}=\mathbf{3 6 . 7}
$$

10A-37. Traveling on the earth's surface, it is 3800 mi from Dallas to Hawaii. What is the percent difference between this arc length and the "burrow-through the earth" straight line distance? \qquad
\qquad \%
$\mathrm{s}=\theta \mathrm{r} \quad \theta=\mathrm{s} / \mathrm{r}=3800 / 3960=.95959596 \mathrm{rad}$

$$
\sin (\theta / 2)=w / 3960 \quad w=1827.9359
$$

$$
\mathrm{x}=2 \mathrm{w}=3655.8718
$$

$$
3800,3655.8718, \% \mathrm{chg}=\mathbf{- 3 . 7 9}
$$

Note: percent decrease would be a positive answer.

10A-38. One point (a, b) on the line $\mathrm{y}=5 \mathrm{x}+3$ is equidistant from the points $(4,8)$ and $(-3,-5)$. What is a ? \qquad

$$
\begin{aligned}
\sqrt{(x-4)^{2}+(y-8)^{2}} & =\sqrt{(x+3)^{2}+(y+5)^{2}} \\
-8 x+16-16 y+64 & =6 x+9+10 y+25 \\
-26 y & =14 x-46 \\
y & =(14 x-46) /-26 \text { and } y=5 x+3 \\
x & -0.222
\end{aligned}
$$

Page 2

10B-38. An artilleryman fires a shell at an angle relative to the horizontal of 27 degrees. The shell reaches a maximum elevation of 68 ft but falls 40 ft short of the target. What new angle less than 45 degrees should the artilleryman use to hit the target on the second shot? 38= \qquad deg

$$
\begin{aligned}
& 68=\frac{\mathrm{v}^{2} \sin ^{2} 27^{\circ}}{2(32.17)} \quad \mathrm{v}=145.696 \ldots \mathrm{ft} / \mathrm{s} \\
& \mathrm{~d}_{\mathrm{h}_{\max }}=\frac{(145.696 \ldots)^{2} \sin 54^{\circ}}{32.17}=533.83 \\
& 533.83+40=\frac{(145.696 \ldots)^{2} \sin \theta}{32.17} \quad \text { Solve } \theta=60.416 \\
& 1 / 2 \theta=\mathbf{3 0 . 2}
\end{aligned}
$$

10E-37. A mother sees her small child running away from her and begins to give chase to catch her. The child was 30 ft away and was moving at $4 \mathrm{ft} / \mathrm{s}$. If the mom can run a mile in 8 min 25 s , how long will it take for her to catch her child? \qquad $37=$ \qquad s

$$
\left(\frac{60}{8 \frac{25}{60}}\right)\left(\frac{22}{15}\right) \mathrm{t}=30+4 \mathrm{t} \quad \mathrm{t}=4.65
$$

10F-36. How far is it from Austin TX to Istanbul if a plane averaging 560 mph leaves Austin at 3:30 AM local time and arrives in Istanbul, 8 time zones later, at 11 PM local time the same day? $36=$ \qquad mi

Keeping the time as "Austin time": 3:30 AM to $3 \mathrm{PM}=11 \frac{1}{2} \mathrm{hrs}$

$$
\mathrm{D}=\mathrm{r} \times \mathrm{t}=(560 \mathrm{mph})\left(11 \frac{1}{2} \mathrm{hr}\right)=\mathbf{6 4 4 0}
$$

10G-37. Andrea walked 0.88 mi one day. The next day she walked 88% of 0.88 miles. The third day, she walked 88% of the preceding day's distance. How far total will she eventually have walked? ---- $37=$ \qquad mi

Infinite geometric series sum:

$$
\mathrm{s}=.88 \div(1-.88)=7.33
$$

Page 3

11B-37. A naval electric gun can be designed to fire a projectile at
Mach 7.5, reaching a maximum vertical height of $500,000 \mathrm{ft}$. What is the maximum horizontal range of the projectile? The Mach number is the projectile velocity divided by the speed of sound, $1116 \mathrm{ft} / \mathrm{s}$. --------- $37=$ \qquad mi

$$
\begin{aligned}
& \mathrm{v}=7.5(1116)=8370 \\
& \mathrm{~d}_{\mathrm{v}_{\max }}=\frac{\mathrm{v}^{2} \sin ^{2} \theta}{2 \mathrm{~g}} \quad 500,000=\frac{8370^{2} \sin ^{2} \theta}{2(32.17)} \quad \theta=42.659 \ldots \\
& \mathrm{~d}_{\mathrm{h}_{\max }}=\frac{\mathrm{v}^{2} \sin 2 \theta}{\mathrm{~g}} \quad \mathrm{~d}_{\mathrm{h}_{\max }}=\frac{8370^{2} \sin 2(42.659)}{32.17} \div 5280=\mathbf{4 1 1}
\end{aligned}
$$

11D-36. A parachute is designed to automatically deploy when the freefall velocity reaches 65 mph . At what elevation should a plane fly if the parachute opens at $8,000 \mathrm{ft}$? ---3= \qquad ft

$$
\begin{aligned}
& \mathrm{V}^{2}=\mathrm{V}_{0}^{2}+2 \mathrm{a}\left(\mathrm{y}-\mathrm{y}_{0}\right) \quad 65 \mathrm{mph} \times 88 / 60=95.33 \ldots \mathrm{ft} / \mathrm{s} \\
& (95.3)^{2}=0+2(32.17) \mathrm{y} \\
& \mathrm{y}=141.2565 \ldots \quad 8000+141.2565=\mathbf{8 1 4 0}
\end{aligned}
$$

11E-36. A ball is dropped vertically from a height of 1 yard. It recovers 80% of its height on the first bounce. What is the total distance traveled by the ball from the time it was released until it came to rest on the floor? $36=$ \qquad ft

$$
\mathrm{s}=3 /(1-.8)=15 \quad 2(15)-3=\mathbf{2 7 . 0}
$$

$11 \mathrm{~F}-36$. In a 3 -person relay race, each makes 2 laps around a $1 / 4 \mathrm{mi}$ track. The first person did his laps at a "rate" of 6 min 23.6 s per mi . The second person pulled a muscle but still finished his laps in $\underline{11 \mathrm{~min} 34 \mathrm{~s} \text {. The last person ran his } 2 \text { laps at a } 5 \mathrm{~min} 52.3 \mathrm{~s} \text { per mi }}$ pace. What was their total time? \qquad $36=$ \qquad $\min (S D)$

$$
\begin{aligned}
& \text { Rate } \left.P_{1}=[6(60)+23.6)\right] / \mathrm{mi} \\
& \text { Rate } P_{2}=[11(60)+34] /(1 / 2 \mathrm{mi}) \\
& \text { Rate } P_{3}=[5(60)+52.3] / \mathrm{mi} \quad \text { But each person only did } 1 / 2 \mathrm{mi} \text {, so } \\
& \text { total time }=[6(60)+23.6)] / 2+[11(60)+34]+[5(60)+52.3] / 2=1061.95 \mathrm{sec} \\
& 1061.95 \mathrm{sec} /(60 \mathrm{sec} / \mathrm{min})\{4 \mathrm{SD}\}=\mathbf{1 7 . 7 0}
\end{aligned}
$$

Page 4

11G-36. A 10-in long, round candle is tapered, 0.75 inches in diameter at the bottom and 0.45 inches in diameter at the top. At what rate is the wax consumed if burning 80% of the candle takes 11 hr ? \qquad $36=$ \qquad $i n^{3} / \mathrm{hr}$

$$
\begin{aligned}
& \mathrm{V}=(1 / 3) \pi\left[\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right] \mathrm{h} \\
& \mathrm{~V}=\frac{1}{3} \pi\left[\left(\frac{.75}{2}\right)^{2}+\left(\frac{.45}{2}\right)^{2}+\left(\frac{.75 \times .45}{2 \times 2}\right)\right] 10 \\
& \mathrm{~V}=2.886 \ldots \quad .8 \mathrm{~V} / 11=.210
\end{aligned}
$$

11I-37. Mercury orbits the sun every $\underline{88.0} \mathrm{dy}$, Jupiter every $\underline{11.87} \mathrm{yr}$ and Uranus every $\underline{84.07}$ yr. How many trips around the sun does Mercury make between the times of closest approach of Jupiter and Uranus? All orbits are in the same direction. $37=$ \qquad (SD)

$$
(1 / 11.87) \mathrm{t}=(1 / 84.7) \mathrm{t}+1
$$

$$
\mathrm{t}=13.8214 \ldots \mathrm{yr}
$$

$$
\mathrm{t} /(88 / 365.256)=\mathbf{5 7 . 4}
$$

12A-38. Rodney made punch by adding 20 tablespoons of concentrate to a gallon bottle and then topped off the bottle with water. Later, he learned that it should have been 20 teaspoons of concentrate. How much punch should be poured out of the bottle so that the concentration is correct when the bottle is topped off with water? $38=$ \qquad cups

1 tablespoon $=3$ teaspoons
2 tablespoons $=1$ ounce
$128 \mathrm{oz}=1 \mathrm{gal}$
20 tablespoons $=10$ ounces
$10 / 128$ should have been $10 /[3(128)$]
Pour out $2 / 3$ of bottle.
$2 / 3$ gallon $=2 / 3(16$ cups $)=\mathbf{1 0 . 7}$

Page 5

12D-36. How long after 5:30 do the minute and hour hands of a clock first
align? 36= \qquad \min

$$
11 / 12 \mathrm{~T}=30+27.5 \quad \mathrm{~T}=\mathbf{6 2 . 7}
$$

Alternate Solution:

$$
11\left(30^{\circ}\right)+30 / 60\left(30^{\circ}\right)
$$

$5.5^{\circ} / \mathrm{min}$

12D-37. Tracy can sew a Christmas ornament in 4 min, and Carol can sew one
In 2.7 min . Starting at 8 AM , Tracy works alone for time t and is then joined by Carol. What is t if they finished 120 ornaments at noon? \qquad $-37=$ \qquad hr

$$
(1 / 4)(4 \times 60)+(1 / 2.7)(x \times 60)=120 \quad x=2.700 \quad 4-x=
$$

1.30

12E-38. What is the radius of a circle tangent to the lines $y=3 x+7$ and $y=$ $0.5 x-3$ and containing the point $(8,1)$?
$38=$ \qquad
Find angle between lines, divide by 2 .
Find point of intersect of lines (A)
Find distance between (A) and (B)
Find r.

$$
\begin{aligned}
& \tan \theta=\left(m_{1}-\mathrm{m}_{2}\right) /\left(1+\mathrm{m}_{1} \mathrm{~m}_{2}\right) \quad \mathrm{m}_{1}=3, \quad \mathrm{~m}_{2}=.5 \\
& \theta=45^{\circ}, \quad \theta / 2=22.5^{\circ} \\
& 3 \mathrm{x}+7=.5 \mathrm{x}-3 \quad \mathrm{x}=-4, \quad \mathrm{y}=-5 \\
& \mathrm{~d}=\sqrt{[8-(-4)]^{2}+[1-(-5)]^{2}}=13.4164 \ldots \\
& \tan 22.5^{\circ}=\mathrm{r} / \mathrm{d} \quad \mathrm{r}=\mathbf{5 . 5 6}
\end{aligned}
$$

12F-38. Steve mixed 5 cups of milk with 6 cups flour to make crepe batter. After using 65% of the batter, he decided to make some pancakes with the rest. Since pancake batter is thicker, he needed to add more flour. If the pancake recipe calls for 1 part milk to 2 parts flour, how much flour should Steve add? 38= \qquad cups

$$
\frac{6(.35)+x}{11(.35)+x}=\frac{2}{3} \quad \mathrm{x}=\mathbf{1 . 4 0}
$$

Page 6

$12 \mathrm{H}-36$. Ganymede, a moon of Jupiter, is the largest moon in the solar system. Its surface area is 0.171 the surface area of earth. What is the percent error in reporting the volume of Ganymede as 0.07 times the volume of earth? \qquad $36=$ \qquad \%

$$
(.171)^{3 / 2}=.07071217 \quad .07071217, .07, \% \mathrm{chg}=\mathbf{- 1 . 0 1}
$$

13A-37. Brad left San Saba on State Highway 190 driving to Iraan, 204 mi away, at 53 mph . Brandon left Iraan 30 min after Brad left, driving to San Saba on the same highway. If they met in Eldorado which is 79 mi from Iraan, what was Brandon's velocity? \qquad $37=$ \qquad mph

$$
\begin{aligned}
& 53 \mathrm{t}=204-79 \rightarrow \mathrm{t}=2.3585 \\
& \mathrm{~V}(\mathrm{t}-.5)=79 \\
& \mathrm{~V}=\mathbf{4 2 . 5}
\end{aligned}
$$

13B-38. A golfer drives a ball 120 ft using an 8 iron, not counting the ball roll after landing. What is the impact velocity of the 8 iron on the ball if an 8 iron launches a ball at an angle of 37 degrees relative to the ground? \qquad
\qquad mph

$$
\mathrm{d}_{\mathrm{h}_{\max }}=\frac{\mathrm{v}^{2} \sin 2 \theta}{\mathrm{~g}} \quad 120=\frac{\mathrm{v}^{2} \sin 74^{\circ}}{32.174} \quad \mathrm{v}=63.3756 \ldots \mathrm{ft} / \mathrm{s} \times(60 / 88)=43.2
$$

13C-38. A spring elongates 1 in for every 5 lbs of load. Four gallons of coconut oil (density equals $0.92 \mathrm{~g} / \mathrm{cm}^{3}$) are hung on the spring which is attached to a frame. However, the container has a leak, losing 10 tablespoons of coconut oil every minute. How long will it take for the container to rise 1.875 in ? ----- $38=$ \qquad hr
$.92 \mathrm{~g} \mathrm{x}(1 \mathrm{~kg} / 1000 \mathrm{~g}) \rightarrow .002028253$ pounds
$\mathrm{cm}^{3} \times\left(1 \mathrm{ml} / 1 \mathrm{~cm}^{3}\right) \times(1 \mathrm{~L} / 1000 \mathrm{~mL}) \rightarrow .0002641 \mathrm{gal} \quad 7.6777 \ldots \mathrm{lb} / \mathrm{gal}$
$\mathrm{F}=($ constant $)($ distance $) \quad \mathrm{F}=\mathrm{kx} \quad 5=\mathrm{k}(1) \quad \mathrm{k}=5$
$F=(5)(1.875 \mathrm{in})=9.375 \mathrm{lb}$
$9.375 \mathrm{lb} / 7.6777 \ldots \mathrm{lb} / \mathrm{gal}=1.221057 \ldots$ gal
$(1.221057 \ldots \mathrm{gal})(128 \mathrm{oz} / \mathrm{gal})(2 \mathrm{Tbsp} / \mathrm{oz})(1 \mathrm{~min} / 10 \mathrm{Tbsp})(1 \mathrm{hr} / 60 \mathrm{~min})=. \mathbf{5 2 1}$

Page 7

13D-36. The velocity of a solid sphere sinking in water is proportional to the square of its diameter. A 1 in diameter sphere sinks at $0.5 \mathrm{~m} / \mathrm{s}$. If this sphere were divided into N smaller spheres that each sank at $20 \mathrm{~mm} / \mathrm{s}$, what is N ? 36= \qquad integer

$$
\begin{aligned}
& 500 / 1^{2}=20 / \mathrm{d}^{2} \quad \mathrm{~d}=.2 \\
& \mathrm{~V}_{1} / \mathrm{V} 2=\left[4 / 3 \pi(1)^{3} / 4 / 3 \pi(.2)^{3}\right]=\mathbf{1 2 5}
\end{aligned}
$$

13G-37. The probability of a person being struck by lightning during their lifetime is $1 / 280,000$. What is the probability of being struck by lightning 1000 times in one's lifetime? $37=$ \qquad

$$
\begin{aligned}
& (1 / 280,000)^{1000} \rightarrow 1000 \log (1 / 280,000)=-5447.15803 \ldots \\
& -5447.15803 \ldots+5448=.84196 \ldots \rightarrow 10^{.84196 \ldots}=6.95 \rightarrow \mathbf{6 . 9 5} \times 10^{-5448}
\end{aligned}
$$

13G-38. How high a tower must Ranger Stan climb to see a land area of $100 \mathrm{mi}^{2}$? \qquad $38=$ \qquad ft

$$
\begin{aligned}
& \pi r^{2}=100 \\
& r=5.64189 \ldots \\
& 3960^{2}+r^{2}=(3960+h)^{2} \\
& h=.004019 \mathrm{mi}
\end{aligned}
$$

$$
5280 \mathrm{~h}=21.2
$$

13H-37. Barry leaves Brownwood, running at $8.5 \mathrm{~min} / \mathrm{mi}$ pace to Zephyr which is 13.8 mi away. After time t, Zane leaves Brownwood by bicycle, looking for Barry. What is t if Zane bikes at 18 mph ? They met up 2.5 mi before Zephyr.

$$
\begin{aligned}
& \mathrm{T}_{1}=11.3 \mathrm{mi} / 18 \mathrm{mph}=.6277 \ldots \mathrm{hr} \\
& \mathrm{~T}_{2}=11.3 \mathrm{mi} /(60 / 8.5) \mathrm{mph}=1.600833 \ldots \mathrm{hr} \\
& \left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) 60=\mathbf{5 8 . 4}
\end{aligned}
$$

 min

Page 8

13I-36. Once 70% of the entire state of Texas received an average of 1.3 -in
rainfall. What total volume of rain was deposited if the area of the state is
$\underline{268,581} \mathrm{mi}^{2}$?
$36=$ \qquad $\mathrm{mi}^{3}(\mathrm{SD})$

$$
\mathrm{V}=\frac{\left[\left(268,581 \mathrm{mi}^{2}\right)(.7)\left(1.3^{\prime \prime}\right)\right]}{\left[\left(12^{\prime \prime} / \mathrm{ft}\right)(5280 \mathrm{ft} / \mathrm{mi})\right]}=3.9(2 \mathrm{SD}) \quad\{1.3 \text { is } 2 \mathrm{SD}, 268,581 \text { is } 6 \mathrm{SD}\}
$$

13I-37. A certain insect population grows exponentially. The first population estimate was 8500 and ten years later it was 136,000 . Over what time period did the insect population triple? -37= \qquad yr

$$
\begin{aligned}
& A=A_{0} e^{k t} \\
& 136,000=8500 \mathrm{e}^{\mathrm{k}(10)} \\
& \mathrm{k}=[\ln (1360 / 85)] / 10
\end{aligned}
$$

$$
\mathrm{e}^{\mathrm{kt}}=3 \text { when } \mathrm{t}=\mathbf{3 . 9 6}
$$

13I-38. Two runners start together running laps on a 400-meter track. The faster runner ran at $4.5 \mathrm{~m} / \mathrm{s}$, and she "lapped" the slower runner in 4 min 35 s .
How far did the slower runner run? \qquad $38=$ \qquad m

$$
\begin{aligned}
& 4.5(275 \mathrm{sec})=\mathrm{x}+400 \\
& \mathrm{x}=\mathbf{8 3 8}
\end{aligned}
$$

$90^{\circ}-20^{\circ}=70^{\circ}$
$\sin 80^{\circ} / 2.38=\sin 70^{\circ} / \mathrm{w}$ $\mathrm{w}=2.27 \ldots$
$\sin 80^{\circ} / \mathrm{w}=\sin 40^{\circ} / \mathrm{x}$ $\mathrm{x}=1.48 \ldots$
hatched area $=\frac{x^{2} \sqrt{3}}{4}+\frac{w^{2} \sqrt{3}}{4}=\mathbf{3 . 1 8}$

Page 9

Notice \triangle on right is isosceles, so top right angle is $\left(180^{\circ}-50^{\circ}\right) / 2=65^{\circ}$.

Then bottom left angle is also 65°.
Shaded Area

$$
\begin{aligned}
& =1 / 2(3.23)^{2} \sin 65^{\circ}-1 / 2(3.23)^{2} \sin 50^{\circ} \\
& =.732
\end{aligned}
$$

ISOSCELES TRIANGLE AND SEGMENT

AREA (TRIANGLE) $=2190$ AREA (SEGMENT) $=209$
$08 G-60=$ \qquad
$\mathrm{A}_{\text {triangle }}=1 / 2 \mathrm{ab} \sin \mathrm{C}$
$2190=1 / 2 \mathrm{r}^{2} \sin \theta$
$\sin \theta=4380 / r^{2}$
$\mathrm{A}_{\text {segment }}=\left(\mathrm{r}^{2} / 2\right)(\theta-\sin \theta)=209$
$418=r^{2} \theta-r^{2} \sin \theta$
$418=r^{2} \theta-r^{2}\left(4380 / r^{2}\right)$
$418=r^{2} \theta-4380$
$\theta=4798 / r^{2}$
$\sin \left(4798 / \mathrm{r}^{2}\right)=\left(4380 / \mathrm{r}^{2}\right)$
when $0<r<(\pi / 2)$
Solver: $\mathrm{r}=80.918 \ldots$
$\theta=4798 / \mathrm{r}^{2}=.733$

$x^{2}+y^{2}=3.1^{2} \quad y^{2}=3.1^{2}-x^{2}$
$x^{2}+z^{2}=3.78^{2}$
$z^{2}=3.78^{2}-x^{2}$
$y^{2}+z^{2}=4.35^{2}$
$\left(3.1^{2}-x^{2}\right)+\left(3.78^{2}-x^{2}\right)=4.35^{2}$
Solver: $\quad \mathrm{x}=\mathbf{1 . 5 8}$

Page 10

$$
\begin{aligned}
& 200=(1 / 3) \pi \mathrm{r}^{2} \mathrm{~h}_{1}-(1 / 3) \pi \mathrm{r}^{2} \mathrm{~h}_{2} \\
& 200=(1 / 3) \pi \mathrm{r}^{2}(\mathrm{~h}-(\mathrm{h}-5.82)) \\
& 200=(1 / 3) \pi \mathrm{r}^{2}(5.82) \\
& \mathrm{r}=\mathbf{5 . 7 3}
\end{aligned}
$$

```
10B-60.
    EQUILATERAL AND ISOSCELES TRIANGLE
        AND SQUARES
```



```
Hatched Area \(=530\)
\(10 B-60=\)
``` \(\qquad\)
\[
360^{\circ}-(60+90+90)=120^{\circ}
\]
\(\mathrm{A}=1 / 2 \mathrm{ab} \sin \mathrm{C}\)
\(530=1 / 2 \mathrm{x}^{2} \sin 120^{\circ}\)
\(\mathrm{x}=35.0\)

Page 11
10E-50.
CUBE AND SQUARE PYRAMID

\(\underset{\text { Pyramid }}{\text { Volume }}=\frac{1}{2}\left[\begin{array}{c}\text { Cube } \\ \text { Volume }\end{array}\right]\)
\(10 \mathrm{E}-50=\) \(\qquad\)

11B-60.
SECTOR AND SEGMENT

Segment Area \(=\) Triangle Area
\(A_{1}=\left(r^{2} / 2\right)(\theta-\sin \theta) \quad A_{2}=1 / 2 r^{2} \sin \theta\)
\(\left(\mathrm{r}^{2} / 2\right)(\theta-\sin \theta)=\left(\mathrm{r}^{2} / 2\right) \sin \theta\)
\(\theta-\sin \theta=\sin \theta\)
\(\theta=2 \sin \theta\)
\(\theta=1.89549 \ldots \mathrm{rad}=\mathbf{1 0 9}^{\circ}\)
\(11 B-60=\) \(\qquad\)
\(\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2} \quad \mathrm{~V}=\mathrm{x}^{3}+1 / 3 \mathrm{Bh}\)
Let \(\mathrm{w}=\) bottom edge of pyramid, \(\mathrm{h}=\) height
\(\tan 40.6^{\circ}=\mathrm{h} / \frac{w \sqrt{2}}{2}=\mathrm{h} /\left(\frac{w}{\sqrt{2}}\right)\)
\(\mathrm{h}=(\mathrm{w})\left(\frac{\tan 40.6^{\circ}}{\sqrt{2}}\right)\)
\(38,700=29.7^{3}+(1 / 3) \mathrm{w}^{2}(\mathrm{w})\left(\frac{\tan 40.6^{5}}{\sqrt{2}}\right)\)
\(\mathrm{w}=39.5542 \ldots \quad \mathrm{~h}=23.9724 \ldots\).
\(h+29.7=53.7\)

Page 12
12D-50

CYLINDER AND HEMISPHERE

Total volume \(=10.5 R^{3}\)
\[
\mathrm{H} / \mathrm{R}=?
\]
\(12 \mathrm{D}-50=\) \(\qquad\)

12E-49.
SLANT CIRCULAR CYLINDER AND CONE

Combined Total Volume \(=0.0634\)
\(12 \mathrm{E}-49=\) \(\qquad\)

12H-50.
CONGRUENT CUBES AND EQUILATERAL
TRIANGULAR PRISM TRIANGULAR PRISM

\(A B=\) ?
\(12 \mathrm{H}-50=\) \(\qquad\)
\(\mathrm{AC}=15.217 \ldots\)
\(\mathrm{AC}^{2}+5.57^{2}=\mathrm{AB}^{2}\)
Top view:

\(A B=16.2\)

\section*{Page 13}

\(\mathrm{V}_{1}=1 / 3 \pi \mathrm{H}\left[\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right]\)
\(\mathrm{V}_{2}=1 / 3 \pi \mathrm{r}_{1}{ }^{2} \mathrm{~h}\)
\(\frac{V_{1}}{V_{2}}=\frac{H}{h} \frac{\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)}{r_{1}^{2}}\)
\(\frac{r_{1}}{9.96-6.59}=\frac{r_{2}}{9.96} \quad\) If \(\mathrm{r}_{1}=1, \mathrm{r}_{2}=\)
2.955...
\[
\frac{V_{1}}{V_{2}}=\frac{6.59}{9.96-6.59}\left[\frac{1+r_{2}^{2}+(1) r_{2}}{1^{2}}\right]=\mathbf{2 4 . 8}
\]

OR
\[
\left[\frac{9.96}{9.96-6.59}\right]^{3}-1=\mathbf{2 4 . 8}
\]

\(\mathrm{s}=\theta \mathrm{r}\)
\(25.4=\theta(24.95)\)
\(\theta=1.018 \ldots \mathrm{rad}\)
\(\sin \theta=\mathrm{h} / 24.95\)
\(\mathrm{h}=21.2\)

Page 14
SECTOR AND RECTANGLE

Volume (Frustum) \(=\) Volume (Hemisphere)
\(13 F-50=\) \(\qquad\)
\[
\begin{aligned}
& \frac{1}{3} \pi\left[\left(\frac{37.4}{2}\right)^{2}+\left(\frac{71.7}{2}\right)^{2}+\left(\frac{37.4}{2}\right)\left(\frac{71.7}{2}\right)\right] h \\
& \quad=\frac{2}{3} \pi\left(\frac{71.7}{2}\right)^{3}
\end{aligned}
\]
\(h=40.0\)

\section*{Page 15}

13G-50.
CONE IN SQUARE PYRAMID

\(1 / 3 B_{1} h-1 / 3 B_{2} h\)
\(1 / 3(.485)^{2} h-1 / 3 \pi(.485 / 2)^{2} h=.00909\)
\(h=.540\)

13G-50 = \(\qquad\)

Page 16

\[
\begin{aligned}
& 4(\text { qtr. circles })+1 \text { sq. }+4 \text { (rect.) } \\
& \pi(3)^{2}+x^{2}+4(3 x)=122 \\
& x=5.4 \\
& x+6=\mathbf{1 1 . 4}
\end{aligned}
\]```

